Simulation of Grassland SOC under Future-Climate Scenarios in Gansu, China

Author:

Zhang Meiling1ORCID,Li Xiaojuan1,Liu Xiaoni2

Affiliation:

1. Center for Quantitative Biology, College of Science, Gansu Agricultural University, Lanzhou 730070, China

2. College of Prataculture, Gansu Agricultural University, Lanzhou 730070, China

Abstract

The impacts of global warming on the grassland carbon cycle are increasingly severe. To explore the spatiotemporal variation in grassland soil organic carbon (SOC) and its response to climate change in Gansu Province, in this study, we designed five future-climate-scenario simulations (2019–2048), based on the baseline (1989–2018), according to the IPCC Fifth Assessment Report. The CENTURY biogeochemistry model was used to estimate the SOC of Gansu Province. One-way ANOVA and an error analysis were used to verify the model. Meanwhile, a Pearson coefficient diagram was used to analyze the main influencing factors of SOC. The results revealed that there was a good agreement between the observed and predicted SOC. The quarterly and inter-annual SOC trends of the five future-climate-scenario simulations were similar to those of the baseline simulation. The most extensive SOC storage occurred in the central Gannan region, in the simulation B scenario (temperature increase of 2 °C, no change in precipitation, and double the CO2 concentration). Temperature had a significant negative effect on SOC. Precipitation had a weak impact on SOC. The results indicate that SOC was more sensitive to temperature than to precipitation.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Gansu Province, China

Ministry of Science and Technology of China high-end foreign expert introduction Program

Natural Science Foundation of Gansu Province, China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3