Effects of climate change in European croplands and grasslands: productivity, greenhouse gas balance and soil carbon storage

Author:

Carozzi MarcoORCID,Martin RaphaëlORCID,Klumpp KatjaORCID,Massad Raia SilviaORCID

Abstract

Abstract. Knowledge of the effects of climate change on agro-ecosystems is fundamental to identifying local actions aimed to maintain productivity and reduce environmental issues. This study investigates the effects of climate perturbation on the European crop and grassland production systems, combining the findings from two specific biogeochemical models. Accurate and high-resolution management and pedoclimatic data were employed. Results have been verified for the period 1978–2004 (historical period) and projected until 2099 with two divergent intensities: the Intergovernmental Panel on Climate Change (IPCC) climate projections, Representative Concentration Pathway (RCP) 4.5 and RCP8.5. We have provided a detailed overview of productivity and the impacts on management (sowing dates, water demand, nitrogen use efficiency). Biogenic greenhouse gas balance (N2O, CH4, CO2) was calculated, including an assessment of the gases' sensitivity to the leading drivers, and a net carbon budget on production systems was compiled. Results confirmed a rise in productivity in the first half of the century (+5 % for croplands at +0.2 t DM ha−1 yr−1, +1 % for grasslands at +0.1 t DM ha−1 yr−1; DM denotes dry matter), whereas a significant reduction in productivity is expected during the period 2050–2099, caused by the shortening of the length of the plant growing cycle associated with rising temperatures. This effect was more pronounced for the more pessimistic climate scenario (−6.1 % for croplands and −7.7 % for grasslands), for the Mediterranean regions and in central European latitudes, confirming a regionally distributed impact of climate change. Non-CO2 greenhouse gas emissions were triggered by rising air temperatures and increased exponentially over the century, often exceeding the CO2 accumulation of the explored agro-ecosystems, which acted as potential C sinks. The emission factor for N2O was 1.82 ± 0.07 % during the historical period and rose to up to 2.05 ± 0.11 % for both climate projections. The biomass removal (crop yield, residues exports, mowing and animal intake) converted croplands and grasslands into net C sources (236 ± 107 Tg CO2 eq. yr−1 in the historical period), increasing from 19 % to 26 % during the climate projections, especially for RCP4.5. Nonetheless, crop residue restitution might represent a potential management strategy to overturn the C balance. Although with a marked latitudinal gradient, water demand will double over the next few decades in the European croplands, whereas the benefit in terms of yield (+2 % to +10 % over the century) will not contribute substantially to balance the C losses due to climate perturbation.

Funder

FP7 Environment

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3