Soil Quality Mediates the Corn Yield in a Thin-Layer Mollisol in Northeast China

Author:

Fang Wei12,Zhong Xuemei2,Peng Xinhua13,Li Linyuan13,Zhang Shaoliang4ORCID,Gao Lei1

Affiliation:

1. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China

2. College of Earth Sciences, Guilin University of Technology, Guilin 541004, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China

Abstract

Soil quality (SQ) is critical to sustainable agricultural development. It is sensitive to the crop yield, especially in thin-layer black-soil regions, which have experienced severe degradation in recent years. However, how to evaluate the SQ and its influence on land productivity is not clear in regions with thin black-soil coverage. Therefore, an integrated soil quality index (SQI) was constructed using diverse datasets along a 30 km transect in a typical thin-layer black-soil region of China. The results showed that obvious soil degradation was observed in this area. Black-soil thickness (BST), soil organic matter (SOM), and the total nitrogen (TN) content were the most strongly correlated with corn yield among the 13 investigated indexes, with Pearson coefficients of 0.65, 0.39 and 0.34, respectively. The minimum-dataset-based SQI using six soil properties within 0–30 cm was the optimal solution for SQ evaluation in the study area. The good performance of the established SQI using the optimal method was supported by its strong correlation with the corn yield, with a Pearson coefficient and linear R2 of 0.75 and 0.56, respectively. The BST identified by differences in colour across the soil profile provided powerful information for the SQI, the value of which would be underestimated by 8% if this index were ignored. The linear R2 between the SQI and corn yield decreased from 0.56 to 0.49 when the BST index was removed. This study showed the significance of improving the SQ in thin-layer black-soil regions. The core of soil management is to prevent the losses of surface black soil and improve the SOM content in this region. These findings can help farmers and decision makers adopt proper measures to improve SQ and thereby crop yield.

Funder

National Key Research and Development Program of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3