Estimation and Climate Impact Analysis of Terrestrial Vegetation Net Primary Productivity in China from 2001 to 2020

Author:

Chen Zhaotong1ORCID,Chen Jiangping1ORCID,Xu Gang2ORCID,Sha Zongyao1ORCID,Yin Jianhua1,Li Zijian1

Affiliation:

1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China

2. School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China

Abstract

The net primary productivity (NPP) of vegetation is an important indicator reflecting the vegetation dynamics and carbon sequestration capacity in a region. In recent years, China has implemented policies to carry out ecological protection. To understand the changes in the distribution of vegetation NPP in China and the influence of climate factors, the Carnegie–Ames–Stanford approach (CASA) model was used to estimate the NPP from 2001 to 2020. In this paper, several sets of measurement datasets and products were collected to evaluate the effectiveness of the model and suggestions were provided for the modification of the CASA model based on the evaluation results. In addition to the correlation analysis, this paper presents a statistical method for analyzing the quantitative effects in individual climatic factors on NPP changes in large regions. The comparison found that the model has a better estimation effect on grassland and needleleaf forest. The estimation error for the evergreen needleleaf forest (ENF) and deciduous broadleaf forest (DBF) decreases with the warming of the climatic zone, while the evergreen broadleaf forest (EBF) and deciduous needleleaf forest (DNF) do the opposite. The changes in total CASA NPP were consistent with the trends of other products, showing a dynamic increasing trend. In terms of the degree of correlation between the NPP changes and climatic factors, the NPP changes were significantly correlated with temperature in about 10.39% of the vegetation cover area and with precipitation in about 26.92% of the vegetation cover area. It was found that the NPP variation had a negative response to the temperature variation in Inner Mongolia grasslands, while it had a positive but small effect (±10 g C) in the Qinghai–Tibet Plateau grasslands. Precipitation had a facilitative effect on the grassland NPP variation, while an increase in the annual precipitation of more than 200 mm had an inhibitory effect in arid and semi-arid regions. This study can provide data and methodological reference for the ecological assessment of large-scale regional and climate anomalous environments.

Funder

Open Fund of Key Laboratory of Natural Resources Monitoring in Tropical and Subtropical Area of South China, Ministry of Natural Resources

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3