Climate change and Land Use/Land Cover Change (LUCC) leading to spatial shifts in net primary productivity in Anhui Province, China

Author:

Tang HuanORCID,Fang Jiawei,Yuan JingORCID

Abstract

As an important part of terrestrial carbon cycle research, net primary productivity is an important parameter to evaluate the quality of terrestrial ecosystem and plays an important role in the analysis of global climate change and carbon balance. Anhui Province is in the Yangtze River Delta region in eastern China. Based on the theoretical basis of CASA model, this paper uses MODIS NDVI, vegetation type data, meteorological data, and LUCC to estimate the NPP of Anhui Province during 2001–2020 and analyzes its spatial-temporal pattern. The results showed that the average NPP in Anhui province was 508.95 gC· (m2 ·a) -1, and the spatial heterogeneity of NPP was strong, and the high value areas were mainly distributed in the Jiangnan Mountains and Dabie Mountains. NPP increased in most areas of Anhui Province, but decreased significantly in 17.60% of the area, mainly in the central area affected by urban and rural expansion and the transformation of the Yangtze River. The dynamic change of NPP in Anhui province is the result of climate change and land use change. Meteorological data are positively correlated with NPP. Among them, the correlation between temperature and solar radiation is higher, and the correlation between NPP and precipitation is the lowest among the three. The NPP of all land cover types was more affected by temperature than precipitation, especially forest land and grassland. The decrease of cultivated land and the increase of Artificial Surfaces (AS) may have contributed to the decrease of NPP in Anhui Province. Human activities have weakened the increase in NPP caused by climate change. In conclusion, this study refined the drivers of spatial heterogeneity of NPP changes in Anhui province, which is conducive to rational planning of terrestrial ecosystems and carbon balance measures.

Funder

National Natural Science Foundation of China

Anhui University Excellent Research and Innovation Project

Publisher

Public Library of Science (PLoS)

Reference77 articles.

1. Assessment of the variation and influencing factors of vegetation NPP and carbon sink capacity under different natural conditions;X Wei;Ecological Indicators,2022

2. Net Primary Production increases in the Yangtze River Basin within the latest 2 decades;J Wang;Global Ecology and Conservation,2021

3. Comparing global models of terrestrial net primary productivity (NPP): overview and key results;W Cramer;Global Change Biology,1999

4. Primary production of the biosphere: Integrating terrestrial and oceanic components;C Field;Science 281: 237–240. Science (New York, NY),1998

5. A 33-Year NPP Monitoring Study in Southwest China by the Fusion of Multi-Source Remote Sensing and Station Data;G Xiaobin;Remote Sensing,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3