A Study on the Spatial and Temporal Variation of Summer Surface Temperature in the Bosten Lake Basin and Its Influencing Factors

Author:

Jumai Miyesier12,Kasimu Alimujiang123ORCID,Liang Hongwu12ORCID,Tang Lina12,Aizizi Yimuranzi12ORCID,Zhang Xueling12

Affiliation:

1. School of Geography and Tourism, Xinjiang Normal University, Urumqi 830054, China

2. Xinjiang Key Laboratory of Lake Environment and Resources in Arid Zone, Urumqi 830054, China

3. Research Centre for Urban Development of Silk Road Economic Belt, Xinjiang Normal University, Urumqi 830054, China

Abstract

The land surface temperature (LST) is an important indicator reflecting the ecological environment condition. As a sensitive area to climate change, mastering the spatial and temporal changes of summer LST in the Bosten Lake basin (BLB) helps gain insight into the evolution of the thermal environment in the Bosten Lake basin and for long-term monitoring of the basic ecological changes in the basin. Based on MOD11A1 data from 2005 to 2020, this paper investigates the diurnal LST spatiotemporal series variation and its influencing factors in the Bosten Lake basin by using surface temperature class classification, trending analysis, the Hurst index, and geographic probes. The results show that (1) the wetland grasslands in and around the Bayinbruck steppe in the northwestern part of the study area exhibit a heat island effect during the day, while the opposite is true at night. In terms of temporal changes, LST changes in the BLB fluctuate widely, having a general rising and then decreasing trend. (2) The decreasing trend of LST from 2005 to 2020 is significant during the daytime and vice versa at night, and the change at night is greater than during the day. The areas with significantly higher diurnal LST in the future have all expanded compared to the area occupied by them now, with an overall trend of a steady increase. (3) The dominant factor of LST variation has the strongest explanatory power when altitude and NDVI are combined during the daytime and the strongest explanatory power when NPP and temperature are combined at night.

Funder

Special Project for Construction of Innovation Environment in Autonomous Region

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3