Abstract
Changes in land surface temperature (LST) can have serious impacts on the water cycle and ecological environment evolution, which in turn threaten the sustainability of ecosystems. The urban agglomeration on the northern slopes of the Tianshan Mountains (UANSTM) is located in the arid and semi-arid regions of northwest China, with an extremely fragile ecological environment and sensitive to climate change. However, studies on the LST of the UANSTM have not received much attention. Therefore, this study explored the spatial distribution pattern, fluctuation characteristics, and influencing factors of the LST of the UANSTM from 2005 to 2021 based on MODIS time series LST data and the geo-detector model with optimal parameters. The results show that the UANSTM is dominated by medium- and high-temperature classes, with high- and extremely high-temperature classes clustered in Turpan City. The daytime and nighttime LST patterns are significantly different, with a typical “daytime cold island and nighttime heat island” feature in the oasis region. During 2005–2021, LST fluctuated greatly in the northwestern part of the UANSTM, with LST showing an increasing trend during both daytime and nighttime, and the warming rate was more intense during daytime than nighttime. The increasing trend of LST in Urumqi, Changji Hui Autonomous Prefecture, Shihezi, and Wujiaqu is very significant and will remain consistent in the future. Precipitation, DEM, and AOD are the most important influencing factors of LST in the UANSTM, where precipitation and DEM are negatively correlated with LST, and AOD is positively correlated with LST. Land cover factors (LULC, NDVI,, and NDBSI) are the next most influential, and socioeconomic factors (NTL, GDP, and POP) are the least influential. The results of this study can provide a scientific reference for the conservation and sustainable development of the ecological environment of the UANSTM.
Funder
the Third Xinjiang Scientific Expedition Program
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献