A Sustainable Method: Production of the Fermented Rice Milk Yogurt by Using Three Efficient Lactic Acid Bacteria

Author:

Hozzein Wael N.ORCID,Hisham Sameh M.,Alkhalifah Dalal Hussien M.

Abstract

Lactic acid bacteria (LAB) have long been used as starters in non-dairy cereal fermentation, as they aid in the production of products such as yoghurt and cheese. Broken rice milk is a plant-based milk alternative that is high in carbs and low in fat, providing excellent nutritional value to human users. The current study intends to ferment broken rice milk supplemented with 6% skim milk using three Lactobacillus strains for the development of yoghurt products, as well as to evaluate the growth, changes in physio-chemical properties, and sensory qualities of the yoghurt produced. Lactobacillus bulgaricus, Lactobacillus casei, Lactobacillus acidophilus, and a commercial yoghurt culture consortium fermented broken rice milk after 8 h. Rather than employing L. acidophilus or a commercial yogurt culture consortia, L. bulgarics was the most efficient starter for yoghurt manufacturing, followed by L. casei. L. bulgaricus had the highest viability counts of 8.5 Log CFU/mL, 0.18 specific growth rate, and 3.78 doubling time. Furthermore, it produces a significant reduction in pH to 4.3 and increases total titratable acidity to 0.09 percent with high overall acidity values of 1.4 mg/L of acetic and lactic acid contents. The maximum acidification rate (Vmax) was 0.2125, the maximum acidification time (Tmax) was 4 h, and the time to reach pH 4.6 (Te) was 5 to 8 h. As a result, L. bulgaricus was chosen as the most efficient isolate for the production of fermented rice milk yoghurt. More research is needed, however, to investigate the new rice-based yoghurt product’s sensory qualities as well as its toxicological effects on normal and malignant human cells.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3