Study on the Interaction between the Reduction and Remediation of Dredged Sediments from Tai Lake Based on Vacuum Electro-Osmosis

Author:

Qi WenchengORCID,Shen YangORCID,Li ShaoyuORCID,Chen Kaijia

Abstract

The treatment of metal-contaminated sediment generated in environmental dredging projects often requires both reduction and remediation, and the electric field has good application prospects in the integration of reduction and remediation. In this study, based on the electro-osmosis, vacuum, and vacuum electro-osmosis methods, a detachable test system was made. Experiments of the three methods were carried out independently on the reduction and remediation of dredged sediment from Tai Lake under pollution-free and Cu-contaminated conditions. The results show that copper contamination weakens the effect of reduction, and the production of copper precipitates makes the soil more prone to cracking and blocking drainage channels, which has the greatest impact on the electro-osmosis method. In terms of copper concentration, vacuum electro-osmosis achieves the transport and discharge of contaminants, and has the best remediation effect. The removal rates at the anode and cathode are 45.1% and 50.0%, respectively. A correlation model based on electrical conductivity, moisture content, and contaminant concentration was established to facilitate the determination of contaminant concentrations in actual projects. Electro-migration plays a dominant role in the remediation process, and the reduction affects the electric field distribution and, thus, the migration efficiency.

Funder

National Natural Science Foundation of China

111 Project of Ministry of Education of the People’s Republic of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3