Developing an Active Microfluidic Pump and Mixer Driven by AC Field-Effect-Mediated Induced-Charge Electro-Osmosis of Metal–Dielectric Janus Micropillars: Physical Perspective and Simulation Analysis

Author:

Liu Weiyu1ORCID,Tao Ye2,Chen Yaoyao3,Ge Zhenyou2,Chen Junshuo4,Li Yanbo4

Affiliation:

1. School of Electronics and Control Engineering, Chang’an University, Xi’an 710064, China

2. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China

3. School of Continuing Education, Chang’an University, Xi’an 710064, China

4. School of Energy and Electrical Engineering, Chang’an University, Xi’an 710064, China

Abstract

We propose herein a novel microfluidic approach for the simultaneous active pumping and mixing of analytes in a straight microchannel via the AC field-effect control of induced-charge electro-osmosis (ICEO) around metal–dielectric solid Janus cylinders of inherent inhomogeneous electrical polarizability immersed in an electrolyte solution. We coin the term “Janus AC flow field-effect transistor (Janus AC-FFET)” to describe this interesting physical phenomenon. The proposed technique utilizes a simple device geometry, in which one or a series of Janus microcylinders are arranged in parallel along the centerline of the channel’s bottom surface, embedding a pair of 3D sidewall driving electrodes. By combining symmetry breaking in both surface polarizability and the AC powering scheme, it is possible, on demand, to adjust the degree of asymmetry of the ICEO flow profile in two orthogonal directions, which includes the horizontal pump and transversal rotating motion. A comprehensive mathematical model was developed under the Debye–Hückel limit to elucidate the physical mechanism underlying the field-effect-reconfigurable diffuse-charge dynamics on both the dielectric and the metal-phase surfaces of the Janus micropillar. For innovation in applied science, an advanced microdevice design integrating an array of discrete Janus cylinders subjected to two oppositely polarized gate terminals is recommended for constructing an active microfluidic pump and mixer, even without external moving parts. Supported by a simulation analysis, our physical demonstration of Janus AC-FFET provides a brand-new approach to muti-directional electro-convective manipulation in modern microfluidic systems.

Funder

National Natural Science Foundation of China

Key research and development program of Shaanxi Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3