Using UAS-Aided Photogrammetry to Monitor and Quantify the Geomorphic Effects of Extreme Weather Events in Tectonically Active Mass Waste-Prone Areas: The Case of Medicane Ianos

Author:

Kotsi Evelina1,Vassilakis Emmanuel1ORCID,Diakakis Michalis2ORCID,Mavroulis Spyridon2ORCID,Konsolaki Aliki1ORCID,Filis Christos2,Lozios Stylianos2,Lekkas Efthymis2

Affiliation:

1. Remote Sensing Laboratory, Department of Geology and Geoenvironment, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece

2. Section of Dynamic Tectonic Applied Geology, Department of Geology and Geoenvironment, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece

Abstract

Extreme weather events can trigger various hydrogeomorphic phenomena and processes including slope failures. These shallow instabilities are difficult to monitor and measure due to the spatial and temporal scales in which they occur. New technologies such as unmanned aerial systems (UAS), photogrammetry and the structure-from-motion (SfM) technique have recently demonstrated capabilities useful in performing accurate terrain observations that have the potential to provide insights into these geomorphic processes. This study explores the use of UAS-aided photogrammetry and change detection, using specialized techniques such as the digital elevation model (DEM) of differences (DoD) and cloud-to-cloud distance (C2C) to monitor and quantify geomorphic changes before and after an extreme medicane event in Myrtos, a highly visited touristic site on Cephalonia Island, Greece. The application demonstrates that the combination of UAS with photogrammetry allows accurate delineation of instabilities, volumetric estimates of morphometric changes, insights into erosion and deposition processes and the delineation of higher-risk areas in a rapid, safe and practical way. Overall, the study illustrates that the combination of tools facilitates continuous monitoring and provides key insights into geomorphic processes that are otherwise difficult to observe. Through this deeper understanding, this approach can be a stepping stone to risk management of this type of highly-visited sites, which in turn is a key ingredient to sustainable development in high-risk areas.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3