Smart Contract Vulnerability Detection Based on Hybrid Attention Mechanism Model

Author:

Wu Huaiguang,Dong HanjieORCID,He Yaqiong,Duan Qianheng

Abstract

A smart contract, as an important part of blockchain technology, has attracted considerable interest from both industry and academia. It provides the basis for the realization of a variety of practical blockchain applications and plays a crucial role in the blockchain ecosystem. While it also holds a large number of digital assets, the frequent occurrence of smart contract vulnerabilities have caused huge economic losses and destroyed the blockchain-based credit system. Currently, the security and reliability of smart contracts have become a new focus of research, and there are a number of smart contract vulnerability detection methods, such as traditional detection tools based on static or dynamic analysis. However, most of them often rely on expert rules, and therefore have poor scalability and high false negative and false positive rates. Recent deep learning methods alleviate this issue, but without considering the semantic information and context of source code. To this end, we propose a hybrid attention mechanism (HAM) model to detect security vulnerabilities in smart contracts. We extract code fragments from the source code, which focus on key points of vulnerability. We conduct extensive experiments on two public smart contract datasets (a total of 24,957 contracts). Empirical results show remarkable accuracy improvement over the state-of-the art methods on five kinds of vulnerabilities, where the detection accuracy could achieve 93.36%, 80.85%, 82.56%, 85.62%, and 82.19% for reentrancy, arithmetic vulnerability, unchecked return value, timestamp dependency, and tx.origin, respectively.

Funder

Major Public Welfare Projects Foundation of Henan Province

Open Foundation of Henna Key Laboratory Cryptography

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3