Smart Contract Vulnerability Detection Based on Multi-Scale Encoders

Author:

Guo Junjun1ORCID,Lu Long1,Li Jingkui1

Affiliation:

1. School of Computer Science and Engineering, Xi’an Technological University, Xi’an 710021, China

Abstract

Vulnerabilities in smart contracts may trigger serious security events, and the detection of smart contract vulnerabilities has become a significant problem. In this paper, to solve the limitations of current deep learning-based vulnerability detection methods in extracting various code critical features, using the multi-scale cascade encoder architecture as the backbone, we propose a novel Multi-Scale Encoder Vulnerability Detection (MEVD) approach to hit well-known high-risk vulnerabilities in smart contracts. Firstly, we use the gating mechanism to design a unique Surface Feature Encoder (SFE) to enrich the semantic information of code features. Then, by combining a Base Transformer Encoder (BTE) and a Detail CNN Encoder (DCE), we introduce a dual-branch encoder to capture the global structure and local detail features of the smart contract code, respectively. Finally, to focus the model’s attention on vulnerability-related characteristics, we employ the Deep Residual Shrinkage Network (DRSN). Experimental results on three types of high-risk vulnerability datasets demonstrate performance compared to state-of-the-art methods, and our method achieves an average detection accuracy of 90%.

Funder

Key Research and Development Project in Shaanxi Province of China

Shaanxi Provincial Education Department

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3