Eulerian–Eulerian Modeling of Multiphase Flow in Horizontal Annuli: Current Limitations and Challenges

Author:

Shynybayeva Amina,Rojas-Solórzano Luis R.ORCID

Abstract

Multiphase flows are present in many natural phenomena, processing technologies, and industries. In the petroleum industry, the multiphase flow is highly relevant, and special attention is paid to the development of predictive tools that determine flow conditions to guarantee safe and economic hydrocarbon extraction and transportation. Hydrodynamic aspects such as pressure drop and holdup are of primary relevance for the field engineer in daily operations like pumping power calculation and equipment selection and control. Multiphase flow associated with oil production is usually a mixture of liquids and gas. The hydrodynamic behavior has been studied in different pipeline configurations (i.e., vertical ascending/descending and horizontal/inclined pipelines). However, the available information about flow patterns as well as the general conditions present in horizontal annuli is incomplete, even if they are of fundamental relevance in today’s horizontal drilling, production, and well intervention in many oil wells around the world. This review aims to present an in-depth revision of the existing models developed to predict two-phase flow patterns and hydrodynamic conditions in annuli flow, focusing mainly on, but not limited to, horizontal configuration. Key flow parameters and effects caused by annuli geometry and the physical properties of fluids are extensively discussed in the present paper. Different empirical correlations and mechanistic and numerical models on two-phase flow through horizontal/inclined pipelines and in both concentric and eccentric annuli are analyzed. Some of these models partially agree with experimental results and show acceptable predictions of frictional pressure loss and flow patterns. Limitations in current models and challenges to be faced in the next generation of models are also discussed.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3