Abstract
Due to difficulties in obtaining monomaterials, intensive research into the properties of ceramic compositions has been undertaken, along with developments to the properties of the compositions. These are not inferior to monomeric structures for a number of basic parameters. Among the different types of ceramics, magnesium fluoride and zinc sulfide occupy a special place due to their unique properties and specific applications. In this paper, we studied functional optoelectronics and modulating technique elements based on the advanced ceramics MgF2 and ZnS. The results of the transmittance spectral parameters and the contact angle estimation as well as an AFM analysis of the studied ceramics, both pure and structured with carbon nanotubes, are presented. We observed that the main characteristics of the studied materials with a surface modified by carbon nanotubes could be significantly changed when an innovative laser-oriented deposition method was applied. This method permitted the CNTs to be deposited in a vertical position on the material surface. The main features of the carbon nanotubes—such as the smaller value of the refractive index, the greater strength between the carbon atoms, and the effective surface—were taken into consideration. The analytical, quantum chemical, and experimental results of the studies of the changes in the basic physical parameters of the selected model of the inorganic matrices of the ceramics are given.
Subject
General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献