Tribological Behavior of Friction Materials of a Disk-Brake Pad Braking System Affected by Structural Changes—A Review

Author:

Ilie FilipORCID,Cristescu Andreea-Catalina

Abstract

For road safety, braking system performance has become a very important requirement for car vehicle manufacturers and passengers. To this end, vehicle designers must understand the characteristics of tribological behavior and the causes of their variation in properties. This paper analyzes the tribological behavior (at friction and wear) of the most recent material couples of the braking disk-pad system affected by their structural change through the implications on the braking system stability, reliability and suitable characterizations. Obtaining information to design a very efficient braking system and assessing the influence of the material’s structural changes on its stability has become a necessity. This has been made possible by using several methods of testing a brake disk-pad couple on various devices intended for this purpose. The materials of the contact surface disk-brake pad with their tribological performance (friction, wear), especially the friction coefficient, present particular importance. Also, system components’ reliability, heat transfer and the noise and vibration of the brake disk-pad couple are vital to the correct operation of the braking system and should be given special attention. The test results obtained define the friction patterns and the influence of structural changes and other environmental factors that can be used in computer analysis.

Publisher

MDPI AG

Subject

General Materials Science

Reference24 articles.

1. Improvement of Braking Efficiency in Vehicle by Using Fusion Braking System;Vinodkumar;Int. Res. J. Eng. Technol. IRJET,2017

2. Influence of structural modifications of automotive brake systems for squeal events with kriging meta-modelling method

3. The Importance of Application and Maintenance of Braking System in Modern Automobile;Novaković;Proceedings of the VI International Conference Industrial Engineering and Environmental Protection 2016 (IIZS 2016),2016

4. Brakes, Brake Control and Driver Assistance Systems

5. Material selection method in design of automotive brake disc;Maleque;Proceedings of the World Congress on Engineering 2010,2010

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3