Effects of Initial Morphology on Growth Kinetics of Cu6Sn5 at SAC305/Cu Interface during Isothermal Aging

Author:

Lee Jia-Yi,Chen Chih-MingORCID

Abstract

Solder/Cu joints are important components responsible for interconnection in microelectronics. Construction of the solder/Cu joints through liquid/solid (L/S) reactions accompanies the formation of the Cu–Sn intermetallic compounds (IMCs) at the joint interface. The Cu6Sn5 IMC exhibits remarkable distinctions in thickness and morphology upon increasing the L/S reaction time. Effects of the initial characteristics of thickness and morphology on the growth kinetics of Cu6Sn5 during subsequent isothermal aging were investigated. SAC305 solder was reflowed on a Cu electroplated layer at 265 °C for 1 to 60 min to produce the Cu6Sn5 IMC with different thickness and morphology at the SAC305/Cu interface. The as-fabricated SAC305/Cu joint samples were aged at 200 °C for 72 to 360 h to investigate the growth kinetics of Cu6Sn5. The results show that the initial characteristics of thickness and morphology significantly influenced the growth kinetics of Cu6Sn5 during the subsequent solid/solid (S/S) reaction. A prolonged L/S reaction time of 60 min (L/S-60) produced a scallop-type Cu6Sn5 IMC with a larger grain size and a thicker thickness, which reduced the quantity of fast diffusion path (grain boundary) and the magnitude of concentration gradient, thus slowing down the growth rate of Cu6Sn5. According to the growth kinetics analysis, the growth rate constant of Cu6Sn5 could be remarkably reduced to 0.151 µm/h0.5 for the L/S-60 sample, representing a significant reduction of 70 % compared to that of the L/S-1 sample (0.508 µm/h0.5 for L/S reaction time of 1 min).

Funder

Ministry of science and technology of Taiwan

Ministry of Education of Taiwan

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3