Fatigue Characteristic of Designed T-Type Specimen under Two-Step Repeating Variable Amplitude Load with Low-Amplitude Load below the Fatigue Limit

Author:

Gan JinORCID,Sun Di,Deng Hui,Wang Zhou,Wang XiaoliORCID,Yao Li,Wu Weiguo

Abstract

In order to investigate the non-linear fatigue cumulative damage of joints in ocean structural parts, one type of low carbon steel Q345D was employed to prepare designed T-type specimens, and a series of fatigue experiments were carried out on the specimens under two-step repeating variable amplitude loading condition. The chosen high cyclic loads were larger than the constant amplitude fatigue limit (CAFL) and the chosen low cyclic loads were below the CAFL. Firstly, the S-N curve of designed T-type specimen was obtained via different constant amplitude fatigue tests. Then, a series of two-step repeating variable load were carried out on designed T-type specimens with the aim of calculating the cumulative damage of specimen under the variable fatigue load. The discussions about non-linear fatigue cumulative damage of designed T-type specimens and the interaction effect between the high and low amplitude loadings on the fatigue life were carried out, and some meaningful conclusions were obtained according to the series of fatigue tests. The results show that fatigue cumulative damage of designed T-type specimens calculated based on Miner’s rule ranges from 0.513 to 1.756. Under the same cycle ratio, the cumulative damage increases with the increase of high cyclic stress, and at the same stress ratio, the cumulative damage increases linearly with the increase of cycle ratio. Based on the non-linear damage evaluation method, it is found that the load interaction effect between high and low stress loads exhibits different damage or strengthening effects with the change of stress ratio and cycle ratio.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental Study of Hot Spot Stress for Spatial CHS KK-Joints;Journal of Marine Science and Engineering;2023-07-18

2. Experimental and Numerical Study on Crack Propagation of Cracked Plates under Low Cycle Fatigue Loads;Journal of Marine Science and Engineering;2023-07-18

3. Study of Crack Closure Effect of Hull Plate under Low Cycle Fatigue;Journal of Marine Science and Engineering;2022-10-20

4. Ship Structures;Journal of Marine Science and Engineering;2022-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3