Abstract
Direction-of-arrival (DOA) estimation in a spatially isotropic white noise background has been widely researched for decades. However, in practice, such as underwater acoustic ambient noise in shallow water, the ambient noise can be spatially colored, which may severely degrade the performance of DOA estimation. To solve this problem, this paper proposes a DOA estimation method based on sparse Bayesian learning with the modified noise model using acoustic vector hydrophone arrays. Firstly, an applicable linear noise model is established by using the prolate spheroidal wave functions (PSWFs) to characterize spatially colored noise and exploiting the excellent performance of the PSWFs in extrapolating band-limited signals to the space domain. Then, using the proposed noise model, an iterative method for sparse spectrum reconstruction is developed under a sparse Bayesian learning (SBL) framework to fit the actual noise field received by the acoustic vector hydrophone array. Finally, a DOA estimation algorithm under the modified noise model is also presented, which has a superior performance under spatially colored noise. Numerical results validate the effectiveness of the proposed method.
Funder
National Key R&D Program of China
National Defense Basic Scientific Research Program of China
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献