Direction-of-Arrival Estimation Method Based on Neural Network with Temporal Structure for Underwater Acoustic Vector Sensor Array

Author:

Xie Yangyang1,Wang Biao1ORCID

Affiliation:

1. School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China

Abstract

Acoustic vector sensor (AVS) is a kind of sensor widely used in underwater detection. Traditional methods use the covariance matrix of the received signal to estimate the direction-of-arrival (DOA), which not only loses the timing structure of the signal but also has the problem of weak anti-noise ability. Therefore, this paper proposes two DOA estimation methods for underwater AVS arrays, one based on a long short-term memory network and attention mechanism (LSTM-ATT), and the other based on Transformer. These two methods can capture the contextual information of sequence signals and extract features with important semantic information. The simulation results show that the two proposed methods perform much better than the multiple signal classification (MUSIC) method, especially in the case of low signal-to-noise ratio (SNR), the DOA estimation accuracy has been greatly improved. The accuracy of the DOA estimation method based on Transformer is comparable to that of the DOA estimation method based on LSTM-ATT, but the computational efficiency is obviously better than that of the DOA estimation method based on LSTM-ATT. Therefore, the DOA estimation method based on Transformer proposed in this paper can provide a reference for fast and effective DOA estimation under low SNR.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Analysis of SVM-Based DOA Estimation for Uniform Linear Arrays;2023 IEEE 14th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON);2023-10-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3