Monte Carlo Based Statistical Model Checking of Cyber-Physical Systems: A Review

Author:

Pappagallo AngelaORCID,Massini Annalisa,Tronci EnricoORCID

Abstract

The ever-increasing deployment of autonomous Cyber-Physical Systems (CPSs) (e.g., autonomous cars, UAV) exacerbates the need for efficient formal verification methods. In this setting, the main obstacle to overcome is the huge number of scenarios to be evaluated. Statistical Model Checking (SMC) is a simulation-based approach that holds the promise to overcome such an obstacle by using statistical methods in order to sample the set of scenarios. Many SMC tools exist, and they have been reviewed in several works. In this paper, we will overview Monte Carlo-based SMC tools in order to provide selection criteria based on Key Performance Indicators (KPIs) for the verification activity (e.g., minimize verification time or cost) as well as on the environment features, the kind of system model, the language used to define the requirements to be verified, the statistical inference approach used, and the algorithm implementing it. Furthermore, we will identify open research challenges in the field of (SMC) tools.

Funder

FP7 Information and Communication Technologies

Publisher

MDPI AG

Subject

Information Systems

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive metamodeling simulation optimization: Insights, challenges, and perspectives;Applied Soft Computing;2024-11

2. Virtual Environment Model Generation for CPS Goal Verification using Imitation Learning;ACM Transactions on Embedded Computing Systems;2024-01-10

3. A Multi-Layered Representation for Intrusion Detection System in Cyber Systems Using CNN Deep Learning Algorithm;2023 International Conference on Data Science and Network Security (ICDSNS);2023-07-28

4. QMaude: Quantitative Specification and Verification in Rewriting Logic;Formal Methods;2023

5. Variability-Aware Design of Space Systems: Variability Modelling, Configuration Workflow and Research Directions;Proceedings of the 16th International Working Conference on Variability Modelling of Software-Intensive Systems;2022-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3