Virtual Environment Model Generation for CPS Goal Verification using Imitation Learning

Author:

Shin Yong-Jun1ORCID,Shin Donghwan2ORCID,Bae Doo-Hwan3ORCID

Affiliation:

1. ETRI, South Korea

2. University of Sheffield, United Kingdom

3. KAIST, South Korea

Abstract

Cyber-Physical Systems (CPS) continuously interact with their physical environments through embedded software controllers that observe the environments and determine actions. Field Operational Tests (FOT) are essential to verify to what extent the CPS under analysis can achieve certain CPS goals, such as satisfying the safety and performance requirements, while interacting with the real operational environment. However, performing many FOTs to obtain statistically significant verification results is challenging due to its high cost and risk in practice. Simulation-based verification can be an alternative to address the challenge, but it still requires an accurate virtual environment model that can replace the real environment interacting with the CPS in a closed loop. In this article, we propose ENVI (ENVironment Imitation), a novel approach to automatically generate an accurate virtual environment model, enabling efficient and accurate simulation-based CPS goal verification in practice.To do this, we first formally define the problem of the virtual environment model generation and solve it by leveraging Imitation Learning (IL), which has been actively studied in machine learning to learn complex behaviors from expert demonstrations. The key idea behind the model generation is to leverage IL for training a model that imitates the interactions between the CPS controller and its real environment as recorded in (possibly very small) FOT logs. We then statistically verify the goal achievement of the CPS by simulating it with the generated model. We empirically evaluate ENVI by applying it to the verification of two popular autonomous driving assistant systems. The results show that ENVI can reduce the cost of CPS goal verification while maintaining its accuracy by generating accurate environment models from only a few FOT logs. The use of IL in virtual environment model generation opens new research directions, further discussed at the end of the article.

Funder

MSIT (Ministry of Science and ICT), Korea, under the ITRC

(SW Star Lab) Software R&D for Model-based Analysis and Verification of Higher-order Large Complex System

Electronics and Telecommunications Research Institut

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3