Optimal Design of an Interior Permanent Magnet Synchronous Motor for Electric Vehicle Applications Using a Machine Learning-Based Surrogate Model

Author:

Guo Song1,Su Xiangdong1,Zhao Hang1ORCID

Affiliation:

1. Robotics and Autonomous Systems Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, China

Abstract

This paper presents an innovative design for an interior permanent magnet synchronous motor (IPMSM), targeting enhanced performance for electric vehicle (EV) applications. The proposed motor features a double V-shaped rotor structure with irregular ferrite magnets embedded in the slots between the permanent magnets. This design significantly enhances torque performance. Furthermore, a machine learning-based surrogate model is developed by integrating fine and coarse mesh data. Optimized using the Non-dominated Sorting Genetic Algorithm II (NSGA-II), this surrogate model effectively reduces computational time compared to traditional finite element analysis (FEA).

Funder

Guangzhou-HKUST (GZ) Joint Funding Program

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3