Deeper Understanding of Ternary Eutectic Carbonates/Ceria-Based Oxide Composite Electrolyte through Thermal Cycling

Author:

Grishin André,Ben Osman Manel,Meskine Haïtam,Albin Valérie,Lair Virginie,Cassir Michel,Ringuedé Armelle

Abstract

Due to a high conductivity of about 0.1 S·cm−1, Li-Na-K carbonate eutectic and Sm-doped ceria composite material is a good electrolyte candidate for hybrid fuel cells operating between 500 °C and 600 °C. The present paper aims at a deeper understanding of the species and mechanisms involved in the ionic transport through impedance spectroscopy and thermal analyses, in oxidizing and reducing atmospheres, wet and dry, and during two heating/cooling cycles. Complementary structural analyses of post-mortem phases allowed us to evidence the irreversible partial transformation of molten carbonates into hydrogenated species, when water and/or hydrogen are added in the surrounding atmospheres. Furthermore, this modification was avoided by adding CO2 in anodic and/or cathodic compartments. Finally, a mechanistic model of such composite electrical behavior is suggested, according to the surrounding atmospheres used. It leads to the conclusions that cells based on this kind of electrolyte would preferably operate in molten carbonate fuel cell conditions, than in solid oxide fuel cell conditions, and confirms the name of “Hybrid Fuel Cells” instead of Intermediate Temperature (or even Low Temperature) Solid Oxide Fuel Cells.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3