Driving Factors of CO2 Emissions in China’s Power Industry: Relative Importance Analysis Based on Spatial Durbin Model

Author:

Chi Yuanying,Zhou Wenbing,Tang Songlin,Hu YuORCID

Abstract

The low-carbon transformation of the power industry is of great significance to realize the carbon peak in advance. However, almost a third of China’s CO2 emissions came from the power sector in 2019. This paper aimed to identify the key drivers of CO2 emissions in China’s power industry with the consideration of spatial autocorrelation. The spatial Durbin model and relative importance analysis were combined based on Chinese provincial data from 2003 to 2019. This combination demonstrated that GDP, the power supply structure and energy intensity are the key drivers of CO2 emissions in China’s power industry. The self-supply ratio of electricity and the spatial spillover effect have a slight effect on increasing CO2 emissions. The energy demand structure and CO2 emission intensity of thermal power have a positive effect, although it is the lowest. Second, the positive impact of GDP on CO2 emissions is decreasing, but that of the power supply structure and energy intensity is increasing. Third, the energy demand of the industrial and residential sectors has a greater impact on CO2 emissions than that of construction and transportation. For achieving the CO2 emission peak in advance, governments should give priority to developing renewable power and regional electricity trade rather than upgrading thermal power generation. They should also focus on promoting energy-saving technology, especially tapping the energy-saving potential of the industry and resident sectors.

Funder

Yuanying Chi

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3