Deep Neural Network-Based Removal of a Decaying DC Offset in Less Than One Cycle for Digital Relaying

Author:

Sok VattanakORCID,Lee Sun-Woo,Kang Sang-HeeORCID,Nam Soon-RyulORCID

Abstract

To make a correct decision during normal and transient states, the signal processing for relay protection must be completed and designated the correct task within the shortest given duration. This paper proposes to solve a dc offset fault current phasor with harmonics and noise based on a Deep Neural Network (DNN) autoencoder stack. The size of the data window was reduced to less than one cycle to ensure that the correct offset is rapidly computed. The effects of different numbers of the data samples per cycle are discussed. The simulations revealed that the DNN autoencoder stack reduced the size of the data window to approximately 90% of a cycle waveform, and that DNN performance accuracy depended on the number of samples per cycle (32, 64, or 128) and the training dataset used. The fewer the samples per cycle of the training dataset, the more training was required. After training using an adequate dataset, the delay in the correct magnitude prediction was better than that of the partial sums (PSs) method without an additional filter. Similarly, the proposed DNN outperformed the DNN-based full decay cycle dc offset in the case of converging time. Taking advantage of the smaller DNN size and rapid converging time, the proposed DNN could be launched for real-time relay protection and centralized backup protection.

Funder

Korea Electric Power Corporation

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3