A New Ice Quality Prediction Method of Wind Turbine Impeller Based on the Deep Neural Network

Author:

Cui Hongmei,Li ZhongyangORCID,Sun Bingchuan,Fan Teng,Li Yonghao,Luo Lida,Zhang Yong,Wang Jian

Abstract

More and more wind turbines are installed in cold regions because of better wind resources. In these regions, the high humidity and low temperatures in winter will lead to ice accumulation on the wind turbine impeller. A different icing location or mass will lead to different natural frequency variations of the impeller. In order to monitor the icing situation in time and in advance, a method based on depth neural network technology to predict the icing mass is explored and proposed. Natural-environment icing experiments and iced-impeller modal experiments are carried out, aiming at a 600 W wind turbine, respectively. The mapping relationship between the change rate of the natural frequency of the iced impeller at different icing positions and the icing mass is obtained, and the correlation coefficients are all above 0.93. A deep neural network (DNN) prediction model of ice-coating quality for the impeller was constructed with the change rate of the first six-order natural frequencies as the input factor. The results show that the MAE and MSE of the trained model are close to 0. The average prediction error of the DNN model is 4.79%, 9.35%, 3.62%, 1.63%, respectively, under different icing states of the impeller. It can be seen that the DNN shows the best prediction ability among other methods. The smaller the actual ice-covered mass of the impeller, the larger the relative error of the ice-covered mass predicted by the DNN model. In the same ice-covered state, the relative error will decrease gradually with the increase in ice-covered mass. In a word, using the natural frequency change rate to predict the icing quality is feasible and accurate. The research achievements shown here can provide a new idea for wind farms to realize efficient and intelligent icing monitoring and prediction, provide engineering guidance for the wind turbine blade anti-icing and deicing field, and further reduce the negative impact of icing on wind power generation.

Funder

National Natural Science Foundation of China

Interdisciplinary Research Fund of Inner Mongolia Agricultural University

Science and Technology Plan of Inner Mongolia Autonomous Region in China in 2020

Talent Fund of Inner Mongolia Autonomous Region in 2021

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Wind Turbine Icing Prediction Technology;Wind Turbine Icing - Recent Advances in Icing Characteristics and Protection Technology;2023-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3