Recent Progress on the Electrochemical Biosensing of Escherichia coli O157:H7: Material and Methods Overview

Author:

Razmi NasrinORCID,Hasanzadeh Mohammad,Willander Magnus,Nur OmerORCID

Abstract

Escherichia coli O157:H7 (E. coli O157:H7) is a pathogenic strain of Escherichia coli which has issued as a public health threat because of fatal contamination of food and water. Therefore, accurate detection of pathogenic E. coli is important in environmental and food quality monitoring. In spite of their advantages and high acceptance, culture-based methods, enzyme-linked immunosorbent assays (ELISAs), polymerase chain reaction (PCR), flow cytometry, ATP bioluminescence, and solid-phase cytometry have various drawbacks, including being time-consuming, requiring trained technicians and/or specific equipment, and producing biological waste. Therefore, there is necessity for affordable, rapid, and simple approaches. Electrochemical biosensors have shown great promise for rapid food- and water-borne pathogen detection. Over the last decade, various attempts have been made to develop techniques for the rapid quantification of E. coli O157:H7. This review covers the importance of E. coli O157:H7 and recent progress (from 2015 to 2020) in the development of the sensitivity and selectivity of electrochemical sensors developed for E. coli O157:H7 using different nanomaterials, labels, and electrochemical transducers.

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3