Ultrathin TiO2 Blocking Layers via Atomic Layer Deposition toward High-Performance Dye-Sensitized Photo-Electrosynthesis Cells

Author:

Zhang Xiaodan12,Lei Lei2,Wang Xinpeng1ORCID,Wang Degao2

Affiliation:

1. State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China

2. Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and En-Gineering Chinese Academy of Sciences, Ningbo 315201, China

Abstract

The collection of solar energy in chemical bonds via dye-sensitized photoelectrosynthesis cells (DSPECs) is a reliable solution. Herein, atomic layer deposition (ALD) introduced ultrathin blocking layers (BLs) between a mesoporous TiO2 membrane and fluorine-doped tin oxide (FTO), and much improved photoelectrochemical water oxidation performance was well documented. Samples with different BL thicknesses deposited on FTO were obtained by ALD. In the photoanode, polypyridyl Ru(II) complexes were used as photosensitizers, and Ru(bda)-type was used as a catalyst during water oxidation. Under one sun irradiation, the BL (i) increased the photocurrent density; (ii) slowed down the open-circuit voltage decay (OCVD) by electrochemical measurement; (iii) increased the photo-generated electron lifetime roughly from 1 s to more than 100 s; and (iv) enhanced the water oxidation efficiency from 25% to 85% with 0.4 V of applied voltage bias. All this pointed out that the ALD technique-prepared layers could greatly hinder the photogenerated electron–hole pair recombination in the TiO2-based photoanode. This study offers critical backing for the building of molecular films by the ALD technique to split water effectively.

Funder

Yongjiang Innovative Individual Introduction

China and the China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3