Impact of blocking layers based on TiO2 and ZnO prepared via direct current reactive magnetron sputtering on DSSC solar cells

Author:

Sibiński Maciej,Sawicka-Chudy Paulina,Wisz Grzegorz,Gnida Paweł,Schab-Balcerzak Ewa,Wal Andrzej,Yavorskyi Rostyslav,Cholewa Marian

Abstract

AbstractThe optimization of dye-sensitized solar cells (DSSCs) technology towards suppressing charge recombination between the contact and the electron transport layer is a key factor in achieving high conversion efficiency and the successful commercialization of this type of product. An important aspect of the DSSC structure is the front blocking layer (BL): optimizing this component may increase the efficiency of photoelectron transfer from the dye to the semiconductor by reduction charge recombination at the TiO2/electrolyte and FTO/electrolyte interfaces. In this paper, a series of blocking layer variants, based on TiO2 and ZnO:TiO2, were obtained using the reactive magnetron sputtering method. Material composition, structure and layer thickness were referred to each process parameters. Complete DSSCs with structure FTO/BL/m-TiO2@N719/ EL-HSE/Pt/FTO were obtained on such bases. In the final results, verification of opto-electrical parameters of these cells were tested and used for the conclusions on the optimal blocking layer composition. As the conclusion, application of blocking layer consists of neat TiO2 resulted in improvement of device efficiency. It should be noted that for TiO2:ZnO/CuxO and TiO2/CuxO cells, higher efficiencies were also achieved when pure TiO2 was used as window layer. Additionally it was proven that the admixture of ZnO phase inspires Voc and FF growth, but is overall unfavorable compared to pristine TiO2 blocking layer and the reference cell, according to the final cell efficiency.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3