Investigation of Approaches to Control the Compositions of Zn(Se,OH) Buffers Prepared by Chemical Bath Deposition Process for Cu(In,Ga)Se2 (CIGS) Solar Cells

Author:

Huang Chia-Hua,Jan Yueh-Lin,Chuang Wen-Jie,Lu Po-Tsung

Abstract

We deposited zinc-based films with various ammonia (ammonium hydroxide; NH4OH) and selenourea concentrations, at the bath temperature of 80 °C, on soda-lime glass substrates using the chemical bath deposition (CBD) process. We analyzed the results using X-ray photoelectron spectroscopy (XPS), which showed binding energies of zinc, selenium, and oxygen. The as-deposited films, containing zinc selenide, zinc oxide, and zinc hydroxide, were also verified. The films prepared in this investigation can be referred to a zinc compound, characterized as Zn(Se,OH). A conformal coverage of the Zn(Se,OH) films, with the smooth surface morphologies, was obtained by optimizing the ammonia or selenourea concentrations in the deposition solutions. The Zn(Se,OH) films had a preferred (111) orientation, corresponding to a cubic crystal structure. The bandgap energies of the as-deposited Zn(Se,OH) films were determined from the optical absorption data, suggesting a dependence of the bandgap energies on the atomic percentages of ZnSe, Zn(OH)2 and ZnO in the films. The same variation tendency of the compositions and the bandgap energies for the films, deposited with an increment in the ammonia or selenourea concentrations was achieved, attributing to the facilitation of ZnSe formation. These results show that the compositions, and therefore the bandgap energies, can be controlled by the ammonia concentrations, or selenourea concentrations.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3