Research into Ship Trajectory Prediction Based on An Improved LSTM Network

Author:

Zhang Jiangnan1,Wang Hai2,Cui Fengjuan3,Liu Yongshuo2,Liu Zhenxing2,Dong Junyu1

Affiliation:

1. Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266100, China

2. Network Information Management Office, Qingdao Agricultural University, Qingdao 266109, China

3. North China Sea Data and Information Service of State Oceanic Administration, Qingdao 266061, China

Abstract

The establishment of ship trajectory prediction is critical in analyzing trajectory data. It serves as a critical reference point for identifying abnormal behavior and potential collision risks for ships. Accurate and real-time ship trajectory prediction is essential during navigation. Since the timing of automatic identification system (AIS) data is irregular, traditional methods usually use time calibration to simulate the data of uniform sequencing before analysis. Inevitably, this increases the chances of error and time delays. To address this issue, we propose a time-aware LSTM (T-LSTM) single-ship trajectory model combined with the generative adversarial network (GAN) to predict multiple ship trajectories. These analysis methods are capable of directly analyzing AIS data and have demonstrated better performance in both single-ship and multi-ship trajectories. Our experimental results show that the proposed method achieves high accuracy and can meet the practical navigation requirements of ships.

Funder

Application of remote collaborative computing of foreign medicinal biological resources OF Key R&D program of Shandong Province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3