Informer-Based Model for Long-Term Ship Trajectory Prediction

Author:

Xiong Caiquan1,Shi Hao1,Li Jiaming1,Wu Xinyun1,Gao Rong1ORCID

Affiliation:

1. School of Computer Science, Hubei University of Technology, Wuhan 430068, China

Abstract

Ship trajectory prediction is a complex time series forecasting problem that necessitates models capable of accurately capturing both long-term trends and short-term fluctuations in vessel movements. While existing deep learning models excel in short-term predictions, they struggle with long-sequence time series forecasting (LSTF) due to difficulties in capturing long-term dependencies, resulting in significant prediction errors. This paper proposes the Informer-TP method, leveraging Automatic Identification System (AIS) data and based on the Informer model, to enhance the ability to capture long-term dependencies, thereby improving the accuracy of long-term ship trajectory predictions. Firstly, AIS data are preprocessed and divided into trajectory segments. Secondly, the time series is separated from the trajectory data in each segment and input into the model. The Informer model is utilized to improve long-term ship trajectory prediction ability, and the output mechanism is adjusted to enable predictions for each segment. Finally, the proposed model’s effectiveness is validated through comparisons with baseline models, and the influence of various sequence lengths Ltoken on the Informer-TP model is explored. Experimental results show that compared with other models, the proposed model exhibits the lowest Mean Squared Error, Mean Absolute Error, and Haversine distance in long-term forecasting, demonstrating that the model can effectively capture long-term dependencies in the trajectories, thereby improving the accuracy of long-term vessel trajectory predictions. This provides an effective and feasible method for ensuring ship navigation safety and advancing intelligent shipping.

Funder

National Natural Science Foundation of China

Science and Technology Program of Hubei Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3