Relationship between Submerged Marine Debris and Macrobenthic Fauna in Jeju Island, South Korea

Author:

Kim Sang Lyeol1ORCID,Lee Hyung Gon1,Park Yosup2,Yu Ok Hwan1ORCID

Affiliation:

1. Ocean Climate Response & Ecosystem Research Department, Korea Institute of Ocean Science & Technology (KIOST), 385, Haeyang-ro, Yeongdo-gu, Busan 49111, Republic of Korea

2. Maritime Robotics Test and Evaluation Center, Korea Institute of Ocean Science & Technology (KIOST), 30, Haean-ro 1106 beon-gil, Heunghae-eup, Buk-gu, Pohang-si 37553, Republic of Korea

Abstract

Pollution associated with marine debris is of global ecological concern, as it threatens wildlife and local economies. Submerged marine debris alters local benthic species composition and community characteristics. The study site of Jaguri, Jeju Island, where a variety of submerged marine debris was found, was used to investigate the impact of submerged marine debris on the macrobenthic fauna of sandy and rocky substrates. The dominant macrobenthos taxon differed by sediment type; the polychaete Armandia lanceolata was dominant in sandy bottom environments and the mollusk Leiosolenus lischkei was dominant in rocky bottom environments. The presence of marine debris was associated with differences in biomass in both the soft and rocky areas. The site without debris had higher biomass in the soft area, and the site with nets had a higher density of benthic animals within the site with debris. In the rocky area. the site with debris had a higher biomass. Macrobenthos were affected by the type of deposited marine debris and the type of sediment substrate. This study provides a basis for future studies on the impact of debris on marine ecosystems and identified the benthos species affected by marine debris.

Funder

Korea Institute of Ocean Science and Technology

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3