Assessing the Potential Regrowth Ability of Microalgae Using Hull Cleaning Wastewater from International Commercial Ships

Author:

Lim Young Kyun1,Kim Moonkoo12ORCID,Shin Kyoungsoon3,Kim Taekhyun12,Lee Chung Hyeon1ORCID,Yoon Ji Nam12ORCID,Baek Seung Ho12ORCID

Affiliation:

1. Ecological Risk Research Department, KIOST (Korea Institute of Ocean Science and Technology), Geoje 53201, Republic of Korea

2. Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea

3. Ballast Water Research Center, KIOST (Korea Institute of Ocean Science and Technology), Geoje 53201, Republic of Korea

Abstract

Ship biofouling is recognized as a significant pathway for the introduction and spread of invasive organisms. The in-water cleaning of ship hulls generates wastewater that includes antifouling paint residues and biofouling organisms, which inevitably leak into the marine environments, resulting in substantial adverse effects on marine ecosystems. To assess the impact of hull cleaning wastewater (HCW) on microalgae, we conducted microcosm experiments using HCW including attached microalgae. The experiments consisted of a total of 12 combined trials, including the following groups: ambient seawater as a control, the 5% HCW group (HCW), and the 5% HCW + nutrient addition group (HCW+N), conducted at temperatures of 15 and 20 °C, respectively. The Chl. a concentrations in the water column in the control group exhibited maximum values on day 1 (5.24 μg L−1 at 15 °C and 12.37 μg L−1 at 20 °C), but those of the treatments were at low levels, below 2 μg L−1 at both temperatures. On the other hand, the Chl. a concentrations on plastic plates were higher in the treatments than in the control group. Specifically, the Fv/Fm ratio in the water column, which indicates photosynthetic activity, was significantly higher in the control group compared to both the HCW and HCW+N groups at 15 and 20 °C (p < 0.05). This suggests that the growth of water column phytoplankton was inhibited following HCW inoculation. However, there were no significant differences in the Fv/Fm on plastic plates between the control and HCW treatment groups, implying that the periphyton maintained a high photosynthetic capacity even in the presence of HCW treatments. The elution of particulate copper in HCW was observed, which was considered as the main reason for the growth of phytoplankton. Our study results suggest that the runoff of HCW in the marine environment has a greater negative effect on phytoplankton than on periphyton, which can lead to changes in microalgae community composition and a decrease in productivity in the marine environment. Therefore, it is crucial to manage HCW runoff based on scientific assessments to minimize the ecological risks associated with the removal of biofilm or slime from ship biofouling during in-water hull cleaning.

Funder

Korea Institute of Marine Science & Technology Promotion

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3