Influence of Relative Humidity on the Characteristics of Filter Cake Using Particle Flow Code Simulation

Author:

Shi Dinglian,Li Jianlong,Du Yongnan,Wu Quanquan,Huang Shan,Huang Hong,Wu Daishe

Abstract

To study the effect of air humidity on particle filtration performance, the Particle Flow Code (PFC) calculation program was used to numerically simulate the formation process of filter cake. The effects of relative air humidity on the deposition morphology, porosity and filtration resistance characteristics of the filter cake were revealed. The results show that relative humidity (RH) is mainly reflected in the density and surface viscosity of the particles. It was found that the higher the relative humidity, the higher the particle moisture content, the greater the density, and the greater the surface viscosity. With an increase in the particle density or with a decrease in the viscosity, the bridging phenomenon of particle deposition became more obvious; the dendritic deposition phenomenon became weaker; and, therefore, the filter cake structure became denser; the porosity decreased; and the total filtration resistance increased. As the humidity changed, the actual density and viscosity of the particles changed simultaneously with different degrees, which caused different variation trends of the filter cake characteristics. Three different types of particles, DM828 (Starch), PVA1788 (Polyvinyl Alcohol) and Polyacrylamide (Polyacrylic acid), were selected for comparison. For the studied PVA1788 and Polyacrylamide particles, with an increase in relative humidity, the porosity of the filter cake increased monotonously, while the total filtration resistance decreased monotonously. For DM828 particles, the cake porosity first decreased and then increased, and the total filtration resistance first increased and then decreased, with an inflection point at 30% RH. By combining these results with existing reports, three kinds of variations of the filtration performance with humidity could be determined: (1) as the humidity increased, the filtration resistance first increased and then decreased; (2) the filtration resistance decreased; and (3) the filtration resistance increased.

Funder

Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3