Emission of Fine Dust from Open Storage of Industrial Materials Exposed to Wind Erosion

Author:

Dentoni ValentinaORCID,Grosso Battista,Pinna FrancescoORCID,Lai AlessioORCID,Bouarour OuizaORCID

Abstract

A physical-mathematical model has been designed to estimate the emission of dust from the surface of granular materials exposed to wind erosion. The emission model implements the Monte Carlo probabilistic approach, which for a given wind velocity (i.e., shear stress velocity) ascribes the probability of saltation to the particle aggregates composing the erodible surface and calculates the emission of dust aerosol based on the main laws governing the physics of wind-blown particles. The article discusses the application of the emission code to the surfaces of two metal sulphides (PbS and ZnS), which are typically stored in stockpiles in the open yards of industrial plants that operate in the commodity sector, to be used as raw materials for the production of lead and zinc (non-ferrous metals). The results of the simulation were found to be in agreement with the indication provided by the technical literature about the emission potential of the two metal sulphides. The emission model hereby proposed intends to provide an analytical integration to the experimental and empirical Emission Factors (EF) already suggested by the technical and scientific literature about industrial wind erosion.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference49 articles.

1. The physics of wind-blown sand and dust

2. The Physics of Blown Sand and Deserd Dunes;Bagnold,1941

3. Physics and Modelling of Wind Erosion (Atmospheric and Oceanographic Sciences Library, 37);Shao,2008

4. Dust Emission Processes

5. Transition from damage to fragmentation in collision of solids

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3