Analysis of Regional Changes in Geodetic Mass Balance for All Caucasus Glaciers over the Past Two Decades

Author:

Tielidze Levan G.ORCID,Jomelli VincentORCID,Nosenko Gennady A.

Abstract

Glaciers and snow in the Caucasus are major sources of runoff for populated places in many parts of this mountain region. These glaciers have shown a continuous area decrease; however, the magnitude of mass balance changes at the regional scale need to be further investigated. Here, we analyzed regional changes in surface elevation (or thickness) and geodetic mass balance for 1861 glaciers (1186.1 ± 53.3 km2) between 2000 and 2019 from recently published dataset and outlines of the Caucasus glacier inventory. We used a debris-covered glacier dataset to compare the changes between debris-free and debris-covered glaciers. We also used 30 m resolution ASTER GDEM (2011) to determine topographic details, such as aspect, slope, and elevation distribution of glaciers. Results indicate that the mean rate of glacier mass loss has accelerated from 0.42 ± 0.61 m of water equivalent per year (m w.e. a−1) over 2000–2010, to 0.64 ± 0.66 m w.e. a−1 over 2010–2019. This was 0.53 ± 0.38 m w.e. a−1 in 2000–2019. Mass loss rates differ between the western, central, and eastern Greater Caucasus, indicating the highest mean annual mass loss in the western section (0.65 ± 0.43 m w.e. a−1) in 2000–2019 and much lower in the central (0.48 ± 0.35 m w.e. a−1) and eastern (0.38 ± 0.37 m w.e. a−1) sections. No difference was found between the northern and southern slopes over the last twenty years corresponding 0.53 ± 0.38 m w.e. a−1. The observed decrease in mean annual geodetic mass balance is higher on debris-covered glaciers (0.66 ± 0.17 m w.e. a−1) than those on debris-free glaciers (0.49 ± 0.15 m w.e. a−1) between 2000 and 2019. Thickness change values in 2010–2019 were 1.5 times more negative (0.75 ± 0.70 m a−1) than those in 2000–2010 (0.50 ± 0.67 m a−1) in the entire region, suggesting an acceleration of ice thinning starting in 2010. A significant positive trend of May-September air temperatures at two selected meteorological stations (Terskol and Mestia) along with a negative trend of October-April precipitation might be responsible for the negative mass balances and thinning for all Caucasus glaciers over the study period. These results provide insight into the change processes of regional glaciers, which is key information to improve glaciological and hydrological projections in the Caucasus region.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference51 articles.

1. Cogley, J.G., Hock, R., Rasmussen, L.A., Arendt, A.A., Bauder, A., Braithwaite, R.J., Jansson, P., Kaser, G., Möller, M., and Nicholson, L. (2011). Glossary of Glacier Mass Balance and Related Terms, UNESCO-IHP. IACS Contribution No. 2.

2. A new model for global glacier change and sea-level rise;Front. Earth Sci.,2015

3. Accelerated global glacier mass loss in the early twenty-first century;Nature,2021

4. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016;Nature,2019

5. Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., and Kutuzov, S. (2019). IPCC Special Report on Ocean and the Cryosphere in a Changing Climate (SROCC), IPCC.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3