Evaluation of Warm-Season Rainfall Diurnal Variation over the Qilian Mountains in Northwest China in ERA5 Reanalysis

Author:

He Mu,Chen HaomingORCID,Yu Rucong

Abstract

On the basis of hourly rain-gauge data from 735 stations over the Qilian Mountains in Northwest China, the rainfall diurnal variation represented in ERA5 reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) was evaluated from May to October during 2012–2019. Results show that rainfall with intensities below 4 mm h−1 was mostly overestimated, while intensities above 4 mm h−1 were underestimated in ERA5. The most severe overestimation of weak precipitation occurs in the late afternoon, while heavy precipitation is mostly underestimated at night. Deviation in both heavy and weak precipitation is more evident in mountainous areas. The diurnal peak was reasonably reproduced for the rainfall events with durations shorter than 4 h, while the peak hour of events with longer duration showed evident bias. The positive (negative) deviations of short (long) duration rainfall events mainly appear in the late afternoon (night). Around the Qilian Mountains, where deviation is pronounced, the bias of afternoon short-duration events is influenced by higher-frequency precipitation, while the bias of long-duration events is related to the lower frequency of precipitation at night. In terms of the spatial distribution of precipitation with varied elevation, ERA5 fails to represent variation in weak and heavy precipitation with increasing elevation, which may be related to the deviation of surface-specific humidity in reanalysis. The results of this study imply the uncertainty of rainfall products by ERA5 over regions with complex topographic effects and provide metrics to evaluate rainfall products or forecasts over complex terrain area.

Funder

the National Key R&D Program of China and the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3