Long-Term (2017–2020) Aerosol Optical Depth Observations in Hohhot City in Mongolian Plateau and the Impacts from Different Types of Aerosol

Author:

Ma Yongjing,Tian Yongli,Ren Yuanzhe,Wang Zifa,Wu Lin,Pan Xiaole,Ma Yining,Xin JinyuanORCID

Abstract

Aerosol optical depth (AOD) measurements for 2017–2020 in urban Hohhot of the Mongolian plateau, a transition zone between the depopulated zone and East Asian urban agglomeration, were analyzed for the first time. Results show that annual AOD500 and Ångström exponent α440-675 were 0.36 ± 0.09 and 1.11 ± 0.16 (2017), 0.41 ± 0.12 and 0.90 ± 0.28 (2018), 0.38 ± 0.09 and 1.13 ± 0.24 (2019), 0.38 ± 0.12 and 1.17 ± 0.22 (2020), respectively, representing a slightly polluted level with a mixed type of coarse dust aerosol and a fine urban/industrial aerosol. Throughout the year, depopulated-zone continental air flows predominated in Hohhot (i.e., NW-quadrant wind), accounting for 82.12% (spring), 74.54% (summer), 63.61% (autumn), and 100% (winter). The clean and strong NW-quadrant air flows induced by the south movement of a Siberian anticyclone resulted in a low 500-nm AOD of 0.30 ± 0.29, 0.20 ± 0.15, 0.24 ± 0.29, and 0.13 ± 0.08 from spring to winter. Meanwhile, the local emissions from Hohhot city, as well as anthropogenic urban/industrial aerosols transported by southern and western air masses, originating from southern urban agglomeration and western industrial cities (Baotou, Wuhai, etc.), contributed to the highest aerosol loading, with significant transformation rates of the secondary aerosols Sulfate-Nitrate-Ammonium (SNA) of 47.45%, 57.39%, 49.88%, and 45.16–47.36% in PM2.5 for each season. The extinction fraction of fine aerosols under these anthropogenic trajectories can be as high as 80%, and the largest fine aerosol size was around 0.2–0.25 μm. Dust aerosols were suspending in urban Hohhot all year, although at different levels for different seasons, and the extinction fraction of dust aerosol during sandstorms was generally higher than 70%.

Funder

China Postdoctoral Science Foundation

the major science and technology project of Inner Mongolia Autonomous Region

National Natural Science Foundation of China

the Royal Society

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3