Remote Sensing of Planetary Boundary Layer Thermodynamic and Material Structures over a Large Steel Plant, China

Author:

Ren Xinbing12,Zhao Liping3,Ma Yongjing1ORCID,Wu Junsong4,Zhou Fentao4,Jia Danjie12,Zhao Dandan1,Xin Jinyuan12ORCID

Affiliation:

1. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

2. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3. Shanxi Provincial Meteorological Service Center, Taiyuan 030002, China

4. Shanxi JinhuanKeyuan Environmental Resources Technology Co., Ltd., Taiyuan 030024, China

Abstract

Air pollutants emitted by industries can significantly affect local air quality and jeopardize human health, and the study of the boundary layer thermodynamic structure and diffusion capacity over industrial plants can be beneficial for the improvement of corporate air pollution control measures. The continuous high temporal and spatial resolution monitoring of the boundary layer structure (thermal, dynamic, and material) by advanced remote sensing instruments over a single strong industrial source (steel plant) in Shanxi Province, China, from May to June 2021 revealed the boundary layer characteristics under the influence of a single strong local anthropogenic influence. Strong nocturnal temperature inversions and grounded temperature inversions were prone to occur over industrial sources. The local wind field was characterized by significant daily variations, with the whole-layer airflow during the daytime dominated by southwesterly winds. At night, under the influence of radiation, topography, and surface, the airflow was dominated by easterly winds with low speeds (less than 2 m/s) in the low altitude range of 100 m, while the wind direction was still dominated by southwesterly winds with higher speeds in the altitude of 100 m. In addition, the average atmospheric diffusion capacity increased significantly with height in the 500 m altitude range, with an increase in rate of about 2~3 times/50 m, and continued to show a discontinuous increasing trend above 500 m. Combined with the wind direction and wind speed contours, it can be seen that the pollutants can be effectively dispersed at a height of 100 m. The thermal and turbulent boundary layer heights were highly consistent, and the material boundary layer height was significantly higher than the thermal and turbulent boundary layer heights during the daytime when convection was strong.

Funder

Ministry of Science and Technology of China

National Natural Science Foundation of China

Royal Society

China Postdoctoral Science Foundation

Special Support from China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3