Enhanced Methane Oxidation Potential of Landfill Cover Soil Modified with Aged Refuse

Author:

He Haijie,Wu Tao,Qiu Zhanhong,Zhao Chenxi,Wang Shifang,Yao Jun,Hong Jie

Abstract

Aged refuse with a landfill age of 1.5 years was collected from a municipal solid waste landfill with high kitchen waste content and mixed with soil as biocover material for landfill. A series of laboratory batch tests was performed to determine the methane oxidation potential and optimal mixing ratio of landfill cover soil modified with aged refuse, and the effects of water content, temperature, CO2/CH4, and O2/CH4 ratios on its methane oxidation capacity were analyzed. The microbial community analysis of aged refuse showed that the proportions of type I and type II methane-oxidizing bacteria were 56.27% and 43.73%, respectively. Aged refuse could significantly enhance the methane oxidation potential of cover soil, and the optimal mixing ratio was approximately 1:1. The optimal temperature and water content were about 25 °C and 30%, respectively. Under the conditions of an initial methane concentration of 15% and an O2/CH4 ratio of 0.8–1.2, the measured methane oxidation rate was negatively correlated with the O2/CH4 ratio. The maximum methane oxidation capacity measured in the test reached 308.5 (μg CH4/g)/h, indicating that the low-age refuse in the landfill with high kitchen waste content is a biocover material with great application potential.

Funder

“Pioneer” and “Leading Goose” R&D Program of Zhejiang

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3