Prediction Model for Daily Reference Crop Evapotranspiration Based on Hybrid Algorithm in Semi-Arid Regions of China

Author:

Zhao Xinbo,Li Yuanze,Zhao Zhenhua,Xing Xuguang,Feng Guohua,Bai Jiayi,Wang Yuhang,Qiu Zhaomei,Zhang Jing

Abstract

The accurate estimation of reference crop evapotranspiration (ETO) plays an important role in guiding regional water resource management and crop water content research. In order to improve the accuracy of ETO prediction in regions with missing data, this study used the partial correlation analysis method to select factors that have a large impact on ETO as input combinations to construct ETO estimation models for typical stations in semi-arid regions of China. A biological heuristic optimization algorithm (Golden Eagle optimization algorithm (GEO) and Sparrow optimization algorithm (SSA)) and Extreme Learning Machine model (ELM) were combined to improve the estimation accuracy. The results showed that Ra was the primary factor affecting the ETO model, with an importance range of 0.187–0.566. Compared with the independent ELM model, the hybrid model has higher accuracy and stability. The estimated value of the SSA-ELM model under five-factor input condition (Ra, RH, Tmax, Tmin, U2) is closest to the standard value calculated by FAO56 PM: RMSE = 0.067–0.085, R2 = 0.998–0.999, MAE = 0.050–0.066 and NSE = 0.998–0.999. In general, the combination of a partial correlation analysis algorithm and a hybrid model can be used to estimate ETO with high accuracy under the condition of reducing input factors. Use of the first five factors extracted from the partial correlation analysis algorithm as input to build an ETO estimation model based on SSA-ELM in China’s semi-arid regions is recommended, which can also provide a reference for ETO estimation in similar regions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3