An Advanced Artificial Intelligence System for Identifying the Near-Core Impact Features to Tropical Cyclone Rapid Intensification from the ERA-Interim Data

Author:

Wei Yijun,Yang RuixinORCID,Kinser Jason,Griva IgorORCID,Gkountouna Olga

Abstract

Prediction of tropical cyclone (TC) intensity is one of the ground challenges in weather forecasting, and rapid intensification (RI) is a key part of that prediction. Most of the current RI studies are based on a selected variable (feature) set, which is accumulated based on expert expertise in past studies of TC intensity changes and RI. Are there any more important variables in TC intensity predictions that were not identified in past studies? A systematic and comprehensive search for those variables from vast amounts of gridded data, satellite images, and other historically collected data could be helpful for answering the above question. Artificial intelligence (AI) has the capabilities to distill features in large array data, and it is helpful in identifying new features related to TC intensity changes in general and RI in particular. Here, we leverage the local linear embedding (LLE) dimension reduction techniques to the European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis data for identifying new variables related to RI. In addition to the well-known features in the SHIPS (statistical hurricane intensity prediction scheme) database, we identified other significant features, such as 400 and 450 hPa meridional wind, 1000 hPa potential vorticity, and vertical pressure speed, that could help the understanding and prediction of RI occurrences. Furthermore, our AI system outperforms our baseline model with SHIPS data only by 26.6% and 8.4% in kappa and PSS (Peirce’s skill score), respectively.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3