The Evaluation of Real-Time Hurricane Analysis and Forecast System (HAFS) Stand-Alone Regional (SAR) Model Performance for the 2019 Atlantic Hurricane Season

Author:

Dong Jili,Liu Bin,Zhang Zhan,Wang Weiguo,Mehra Avichal,Hazelton Andrew T.ORCID,Winterbottom Henry R.,Zhu Lin,Wu Keqin,Zhang Chunxi,Tallapragada Vijay,Zhang Xuejin,Gopalakrishnan Sundararaman,Marks FrankORCID

Abstract

The next generation Hurricane Analysis and Forecast System (HAFS) has been developed recently in the National Oceanic and Atmospheric Administration (NOAA) to accelerate the improvement of tropical cyclone (TC) forecasts within the Unified Forecast System (UFS) framework. The finite-volume cubed sphere (FV3) based convection-allowing HAFS Stand-Alone Regional model (HAFS-SAR) was successfully implemented during Hurricane Forecast Improvement Project (HFIP) real-time experiments for the 2019 Atlantic TC season. HAFS-SAR has a single large 3-km horizontal resolution regional domain covering the North Atlantic basin. A total of 273 cases during the 2019 TC season are systematically evaluated against the best track and compared with three operational forecasting systems: Global Forecast System (GFS), Hurricane Weather Research and Forecasting model (HWRF), and Hurricanes in a Multi-scale Ocean-coupled Non-hydrostatic model (HMON). HAFS-SAR has the best performance in track forecasts among the models presented in this study. The intensity forecasts are improved over GFS, but show less skill compared to HWRF and HMON. The radius of gale force wind is over-predicted in HAFS-SAR, while the hurricane force wind radius has lower error than other models.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3