Enhancing Capacity for Short-Term Climate Change Adaptations in Agriculture in Serbia: Development of Integrated Agrometeorological Prediction System

Author:

Vuković Vimić AnaORCID,Djurdjević VladimirORCID,Ranković-Vasić Zorica,Nikolić Dragan,Ćosić Marija,Lipovac Aleksa,Cvetković BojanORCID,Sotonica Dunja,Vojvodić Dijana,Vujadinović Mandić Mirjam

Abstract

The Integrated Agrometeorological Prediction System (IAPS) was a two-year project for the development of the long term forecast (LRF) for agricultural producers. Using LRF in decision-making, to reduce the risks and seize the opportunities, represents short-term adaptation to climate change. High-resolution ensemble forecasts (51 forecasts) were made for a period of 7 months and were initiated on the first day of each month. For the initial testing of the capacity of LRF to provide useful information for producers, 2017 was chosen as the test year as it had a very hot summer and severe drought, which caused significant impacts on agricultural production. LRF was very useful in predicting the variables which bear the memory of the longer period, such are growing degree days for the prediction of dates of the phenophases’ occurrences and the soil moisture of deeper soil layers as an indicator for the drought. Other project activities included field observations, communication with producers, web portal development, etc. Our results showed that the selected priority forecasting products were also identified by the producers as being the highest weather-related risks, the operational forecast implementation with the products designed for the use in agricultural production is proven to be urgent and necessary for decision-making, and required investments are affordable. The total cost of the full upgrade of agrometeorological climate services to meet current needs (including monitoring, seamless forecasting system development and the development of tools for information dissemination) was found to be about three orders of magnitude lower than the assessed losses in agricultural production in the two extreme years over the past decade.

Funder

Science Fund of the Republic of Serbia

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference35 articles.

1. Study on Climate Change in the Western Balkans Region;Vuković,2018

2. Global warming impact on climate change in Serbia for the period 1961-2100

3. Observed Climate Change in Serbia and Projections of Future Climate Based on Different Scenarios of Future Emissions;Đurdjević,2018

4. Climate Change Impacts on Serbian Agriculture;Stričević,2019

5. Vulnerability of agriculture to climate change in Serbia–Farmer’s assessment of impacts and damages;Stričević;J. Agric. Sci.,2020

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3