Spatial-Temporal Mode Analysis and Prediction of Outgoing Longwave Radiation over China in 2002–2021 Based on Atmospheric Infrared Sounder Data

Author:

Tang ChaoliORCID,Liu Dong,Wei Yuanyuan,Tian Xiaomin,Zhao Fengmei,Wu Xin

Abstract

Outgoing longwave radiation (OLR) is a key factor to study the radiation balance of the earth–atmosphere system. It is of great significance to explore the temporal and spatial variation characteristics over the OLR value in China region and to predict its future variation trend. We investigate the characteristic distribution of OLR value over China and predict its results in time series using the seasonal autoregressive integrated moving average (SARIMA) and long short-term memory (LSTM) methods based on the OLR data by the Atmospheric Infrared Sounder (AIRS). The Mann–Kendall (MK) mutation test was used to analyze the annual average of OLR values in China and the mutation points in the four seasons. The empirical orthogonal function (EOF) is used to decompose the spatial characteristics and temporal variation of OLR values in China. The MK mutation test is used to obtain the mutation points in the three seasons of spring, summer and autumn. The cumulative variance contribution of the four modes obtained by EOF decomposition exceeds 70%, and the variance contribution of the first mode exceeds 50%. The prediction accuracy with SARIMA model is 99% and LSTM algorithm is 97%. The results of spatiotemporal analysis show that the OLR value near the equator is significantly higher than that of the north and south poles and decreases with the increase of latitude; the OLR value in spring, summer and autumn is higher than that in winter. The results of the MK test show that there are many mutation points in autumn, and the location of the mutation points cannot be determined. The mutation points in spring and summer meet the confidence interval; the first mode of EOF decomposition has a meridional structure, and the OLR value is dropped within 18 years as a whole. The spatial characteristics of modes 1 and 3 have obvious changes in the Qinghai-Tibet Plateau and Northeast China. The prediction results show that the prediction accuracy of SARIMA is higher than that of LSTM. Therefore, the results predicted by SARIMA may provide a reference for the study of the radiation balance of the earth–atmosphere system in China.

Funder

the University Natural Science Research Project of Anhui Province of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3