Abstract
The biotech cleanroom industry presents a biological basis for living organisms or their components (bacteria or enzymes) to produce helpful medicine. However, biotech industries such as vaccine production need a clean critical environment and contamination control that is always a vital concern for the manufacturing process. This study investigates a biotech cleanroom through a comprehensive field measurement and numerical simulation. The field measurement test results conformed to the design specification to satisfactorily meet with the cleanroom standard of PIC/S and EU GMP. Furthermore, the field measurement data were used as a basic validation and boundary condition for numerical simulation. The numerical simulation results revealed that the concentration distribution in case 1 as a baseline case showed satisfactory results, with a removal efficiency of 75.2% and ventilation efficiency of 80%. However, there was still a high concentration accumulated in certain areas. The improvement strategy was analyzed through non-unidirectional flow ventilation with different face velocities and by adding one return air grille for case 2 and two return air grilles for case 3. The results revealed that case 2 presented the best results in this study, with a removal efficiency of 86.7% and ventilation efficiency of 82% when supplying air velocity at 0.2 m/s. In addition, increasing the supply air velocity to 0.3 m/s could enhance removal ventilation by around 19% and ventilation efficiency by around 5%.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献