Effects of Manure Removal Frequencies and Deodorants on Ammonia and GHG Concentrations in Livestock House

Author:

Zhang Xia,Li Jian,Shao Le,Huan Hailin,Qin Feng,Zhai Pin,Yang Jie,Pan Xiaoqing

Abstract

In order to mitigate the concentration of NH3 and greenhouse gases (GHGs: CO2, N2O, CH4) in livestock houses, two experiments, one determining the ideal manure removal frequency by cleaning the feces from a livestock house once, twice, three, and four times a day, and one in which microbial deodorant and VenaZn deodorant were sprayed, were conducted in a rabbit breeding house. The NH3, CO2, N2O, and CH4 concentrations were monitored continuously with an Innova 1512 photoacoustic gas monitor during the experiments. The results were as follows: the manure removal frequency had a significant impact on the average concentrations of NH3, CO2, and CH4 in the rabbit house. Cleaning the feces in the rabbit breeding house two to three times a day significantly reduced the NH3 concentration, and, on the contrary, cleaning the feces four times a day increased the NH3 concentration in rabbit house; increasing the manure removal frequency significantly reduced the concentrations of CO2 and CH4 in the rabbit house. Considering the average concentrations of NH3, CO2, N2O, and CH4 in the rabbit house and economic cost, it was better to remove feces twice a day. The average NH3 and CO2 concentration declined significantly within 3 days in the summer and winter; the N2O concentration declined within 3 days in the summer but did not decline in the winter; and there was no effect on the CH4 concentration in the summer and in the winter after spraying the rabbit house with microbial deodorant. Therefore, it was better to spray microbial deodorant twice a week on Monday and Thursday to reduce the NH3, CO2, and N2O concentrations in rabbit houses. The NH3, CO2, N2O, and CH4 concentrations first showed a decreasing trend and then an increasing trend over 5 days in the summer and 7 days in the winter after VenaZn deodorant was sprayed in the rabbit house, and the NH3, CO2, N2O, and CH4 concentrations on day 3 and day 4 were significantly lower than they were on the other days.

Funder

the National rabbit industry technology system Nanjing experimental station

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3