Research on Multi-Parameter Prediction of Rabbit Housing Environment Based on Transformer

Author:

Liu Feiqi1,Yang Dong1,Zhang Yuyang2,Yang Chengcai3,Yang Jingjing1ORCID

Affiliation:

1. School of Information Science and Engineering, Hebei North University, China

2. College of Robotics Science and Engineering, Northeastern University, China

3. Zhuolu County Animal Husbandry and Fishery Service Center, China

Abstract

The rabbit breeding industry exhibits vast economic potential and growth opportunities. Nevertheless, the ineffective prediction of environmental conditions in rabbit houses often leads to the spread of infectious diseases, causing illness and death among rabbits. This paper presents a multi-parameter predictive model for environmental conditions such as temperature, humidity, illumination, CO2 concentration, NH3 concentration, and dust conditions in rabbit houses. The model adeptly distinguishes between day and night forecasts, thereby improving the adaptive adjustment of environmental data trends. Importantly, the model encapsulates multi-parameter environmental forecasting to heighten precision, given the high degree of interrelation among parameters. The model's performance is assessed through RMSE, MAE, and MAPE metrics, yielding values of 0.018, 0.031, and 6.31% respectively in predicting rabbit house environmental factors. Experimentally juxtaposed with Bert, Seq2seq, and conventional transformer models, the method demonstrates superior performance.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3